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Mathematical isolation of component spectra in 
HPLCKJV-vis and GC-MS. How unique are the 
resolved spectra? * 
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Abstract: The resolution of overlapping spectra in GC-MS and HPLCAJV-vis is fundamentally limited by the quality of 
the experimental data. The narrowness of the solution range depends on the degree of overlap between components. If 
the components are dissimilar, the solutions obtained by all mathematical methods are robust. Small perturbations in the 
observations do not change the calculated solution very much. Alternating regression (AR) is a useful tool in the analysis 
of overlapping spectra because AR can be calculated very rapidly. The robustness of the solution can be easily checked 
with AR. The mathematical analysis is repeated several times after adding different sets of noise. Each time different 
random spectra are used as a starting point. The range of solutions thus obtained reflects the quality of the data for 
resolution purposes. 
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Introduction 

Biological samples are often very complex 
mixtures. Analysis of these mixtures with 
hyphenated instruments produces large two- 
dimensional observation matrices. It is not 
possible to extract the full information hidden 
in these data matrices because the conceptual 
and mathematical tools required are not fully 
developed. 

Ideally, hyphenated instruments like GC- 
MS and HPLC/UV-vis should produce pure 
spectra of all sample components. In practice 
raw spectra are produced that are mixtures of 
several compounds. In the case of unknown 
and novel compounds the situation is even 
more unsatisfactory. Spectrum libraries cannot 
be used to identify them. For known com- 
ponents the library search routines are very 
useful tools [l-3]. 

A “novelty filter” is required, i.e. a process 
that extracts components that are new. This 
type of problem is encountered in several fields 
of analytical chemistry. Environmental analy- 
sis and doping analysis in sports are two 
examples. Identification of new drug metab- 
olites is an important area of pharmaceutical 
research. Doping analysis provided the initial 

motivation for developing the mathematical 
tools described later [4, 51. 

Sometimes attempts are made to isolate all 
component spectra in a GC-MS run. It is hard 
to reach that goal. As the physical isolation of 
all components is not always possible, math- 
ematical tools can be used as a complement to 
physical separations. If resolutions are not 
successful for some components, attempts are 
made to separate them by the analysis of data 
from a hyphenated instrument. In this sense, 
the technique can be described as ‘math- 
ematical chromatography’ or ‘chromatography 
by mathematics’ [5]. For the analyst the com- 
puter is a logical extension of the chromato- 
graphic column. 

The Problem of Uniqueness 

A set of methods has been developed - 
Alternating Regression (AR) - that is able to 
decompose a two-dimensional observation 
matrix into a number of two-dimensional com- 
ponents. The algorithm has been described 
thoroughly earlier [6]. The method needs an 
estimate for the number of components from 
the investigator, and no previous data about 
the spectra or retention profiles is needed. In 
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this sense alternating regression calculates all 
components from scratch. 

A central problem in any method for math- 
ematical resolution is estimating the unique- 
ness of the solution. The result should lie in a 
narrow interval and it should be reproducible 
when starting from different points. The result 
should not depend on the particular method of 
analysis, and several different mathematical 
approaches should produce the same result. If 
the mathematical tools are applied with proper 
care the solution is limited only by the quality 
of the data. 

The uniqueness of the solution is a function 
of the observations, not a function of the 
algorithm. In most circumstances the obser- 
vations do not define a single, unique solution. 
The algorithm can work correctly, but the 
observations are not distinct enough to 
produce a unique result. It is necessary to 
analyse which types of observations produce 
unique results and which do not. 

All solutions to the spectrum reconstruction 
problem reduce the information content in the 
solution. When the reduction is sufficient the 
information matches that in the observations. 
The output required often has more degrees of 
freedom than the observations. The limited 
amount of information in the observations is 

demonstrated by factor analysis [7, 81. More 
numbers in output cannot be produced than we 
have numbers in input. 

The number of parameters in the solution 
can be reduced by several means. When the 
number of parameters in the solution is small 
enough a stable solution to the reconstruction 
problem is obtained. Different methods use 
different ways to reduce the degrees of 
freedom in the solution. 

Factor analysis is currently the most popular 
way to reduce the dimensionality of the sol- 
ution 19, 101. The solution found by eigen- 
analysis is transformed by some transfor- 
mations into physical spectra [ 111. Alternating 
regression does not use factor analysis. It 
operates directly in the space of spectra and 
concentration profiles. The solution is stabil- 
ized by forcing the concentration profiles to a 
unimodal shape. 

Analysing the Problem of Uniqueness 

tween components is very extensive, the results 
are not uniquely defined. Instead of one 
solution we get results in a certain range of 
variation. 

In statistical terms the covariances between 
the component matrices are a measure of the 
inherent difficulty of mathematical analysis. If 
it is required to reduce the estimate to a single 
number then a condition number can be used 
for the component matrix that contains one 
column for each compound. The column corre- 
sponding to a given compound contains the 
product of the spectrum and concentration 
vector for that compound. The original rectan- 
gular matrix containing the outer product is 
“stretched” into a vector to form a column in 
component matrix. The condition number is 
calculated as the ratio between the largest and 
smallest eigenvalue of the component matrix. 

Some expressions of the component differ- 
ences are quite familiar to practical analysts. In 
fact, they are used in daily work. 

In the simplest case where one mass number 
in the observations is specific for one com- 
pound very little mathematical analysis is 
needed. In practice it is difficult to prove that 
there are no other sources for the specific ion. 
If there are mass numbers specific for one 
molecule, the solution found by all decom- 
position methods is very robust and tolerates 
noise in the observations. 

Another favourable situation is the absence 
of a given ion for a compound. If this mass 
number is present in other compounds but 
missing in one, the contrast makes it possible 
to find a unique solution. It is not possible to 
set up a simple calibration curve between the 
missing intensity and concentration of the 
compound. Still, the specific absence of a mass 
number makes it possible to get a unique 
solution for this component. GC-MS spectra 
often have useful gaps that make them dis- 
similar. 

Usually the situation is not black or white, it 
is grey. There are no compound-specific ions 
or compound-specific gaps. The information is 
not sufficient to define a unique solution. The 
only way to force a unique solution is to bring 
in additional information in the form of a priori 
constraints. It can be assumed for example, 
that the chromatographic peaks have a certain 
shape 1121. The shape functions reduce the 

The degree of difficulty in solving a given dimensionality of the solution. Assumptions 

spectrum decomposition problem has been can also be made about how many spectrum 

discussed previously [6]. If the overlap be- lines are present at most. Some rules can be 
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incorporated that define dependencies be- 
tween fragments in a mass spectrum. 

Introducing constraints has its dangers. The 
solution can be too subjective. By introducing 
constraints it is possible to obtain a definite 
solution. Still, the result may be worthless 
because it incorporates too many subjective 
elements. 

The best way to get a more unique solution is 
to do more experimental work. Additional 
information should be added until an answer is 
obtained with a narrow confidence interval. 
This often means combining a number of 
different spectroscopies. If one spectroscopy is 
used, the analyst manipulates experimental 
variables to obtain a different data set than the 
original [ 131. 

If successful, a new expanded data set is 
obtained where the components are more 
orthogonal than in the first one. Overall, better 
separation is obtained. With luck, some of the 
new observations have more specific peaks or 
more specific missing peaks. Finally, the robust 
nature of the solution should be verified by 
adding noise and solving the spectrum recon- 
struction problem several times. 

Some Numerical Experience 

HPLCKJV-vis data are quite different from 
GC-MS data. UV spectra are continuous, MS 
spectra are line spectra. The information con- 
tent is much higher in mass spectra. AR works 
well with HPLCKJV-vis data and the result- 
ing spectra are smooth. A demonstration of the 

AR with synthetic data is shown in Fig. 1 and 
Fig. 2A-D. The speed of convergence is 
typically faster with GC-MS than with HPLC/ 
UV-vis. One possibility is to use the smooth- 
ness of optical spectra as a further constraint. 

The quantitative fitting of a complete GC- 
MS run brings out some deficiencies in the 
data. Invariably, a small proportion of outliers 
is found in the data. These outliers are not 
outliers on the intensity scale. They are outliers 
on the mass axis. The frequency of outliers is 
about one point in one thousand. 

The reason for the outliers is the algorithm 
in the computer of the GC-MS that converts 
the raw readings into a line spectrum. Because 
the algorithm is forced to work in real time, 
there is a loss of accuracy in some assigned 
mass numbers. The next generation of mass 
spectrometers should store the complete pri- 
mary data on disk. This would permit even 
better utilization of all instrumental data, as 
true two-dimensional measurements could be 
analysed. 

The main strength of AR is the speed of 
calculation. Data can be processed in a time 
frame that corresponds to the time needed for 
measurements. In theory non-linear optimiz- 
ation (NLP) can be used to solve the same 
problem as AR [14]. In practice AR is much 
faster than NLP. This makes it usable even on 
small computers. Speed can be used to perform 
robustness analysis by solving the problem 
several times after perturbations by added 
noise. In future all published spectra should 
have an indication about confidence intervals. 

Figure 1 
A synthetic observation matrix for HPLC/UV-vis. A mixture of five components was formed from the original spectra 
shown in Fig. 2(A). Most of the raw spectra contain three components. 
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